4 research outputs found

    Wrench Capability Analysis of Aerial Cable Towed Systems

    Get PDF
    International audienceAerial cable towed systems (ACTSs) can be created by joining unmanned aerial vehicles (UAVs) to a payload to extend the capabilities of the system beyond those of an individual UAV. This paper describes a systematic method of evaluating the avail- able wrench set and the robustness of equilibrium of ACTSs by adapting wrench analysis techniques used in cable-driven parallel robots to account for the constraints of quadrotor actuation. Case studies are provided to demonstrate the analysis of different classes of ACTSs, as a means of evaluating the design and operating configurations

    Wrench Analysis of Cable-Suspended Parallel Robots Actuated by Quadrotors UAVs

    No full text
    International audienceAerial cable towed systems (ACTSs) can be created by joining unmanned aerial vehicles (UAVs) to a payload to extend the capabilities of the system beyond those of an individual UAV. This paper describes a systematic method for evaluating the available wrench set and the robustness of equilibrium of ACTSs by adapting wrench analysis techniques used in traditional cable-driven parallel robots to account for the constraints of quadrotor actuation and dynamics. Case studies and experimental results are provided to demonstrate the analysis of different classes of ACTSs, as a means of evaluating the design and operating configurations

    Wrench Capability Analysis of Aerial Cable Towed Systems

    No full text
    International audienceAerial cable towed systems (ACTSs) can be created by joining unmanned aerial vehicles (UAVs) to a payload to extend the capabilities of the system beyond those of an individual UAV. This paper describes a systematic method of evaluating the avail- able wrench set and the robustness of equilibrium of ACTSs by adapting wrench analysis techniques used in cable-driven parallel robots to account for the constraints of quadrotor actuation. Case studies are provided to demonstrate the analysis of different classes of ACTSs, as a means of evaluating the design and operating configurations

    Singularity Analysis of Rigid Directed Bearing Graphs for Quadrotor Formations

    No full text
    International audienceThe decentralization of formations using onboard sensing is important for multi-robot systems, improving the robustness and independence of fleet operations. Bearing measurements (obtainable from embedded cameras) are an attractive choice for use in decentralized formation control, however this requires that the formation framework be bearing rigid. Rigidity may be checked numerically for a given formation framework, however it remains difficult to determine the geometric conditions under which otherwise rigid formations become flexible. This paper models the sensor and robot constraints in bearing formations of quadrotors as a kinematic mechanism with analogous properties to find geometric conditions for the degeneration of bearing rigidity (singularities) and the resulting uncontrollable motions. A classification of singularities based on graph substructures is developed, and it is shown that arbitrarily large formations may be designed for which all singularities lie within a known set of geometric conditions. An application on how to use the knowledge of all singularity cases in a formation for singularity-free control maintenance is provided
    corecore